
Abstract. Hund’s multiplicity rule, stating that a higher
spin state has a lower energy within the same electron
configuration, is empirical but has shown to be valid for
both atoms and molecules. Several theoretical inter-
pretations for its validity, including explanations in
terms of the lower interelectron repulsion and the
greater electron–nuclear attraction in the higher spin
state, are available. None of them, however, are satis-
factory. Here we show that Hund’s rule can be explained
by the Janak theorem in density functional theory,
extended to excited states and multiplets. In the exact
density functional theory theory, it leads to DEST=
ES)ET=DeHOMO, with ES and ET the singlet and triplet
state energies and eHOMO the highest occupied molecular
orbital energies of the spin states. This relationship was
previously obtained by M. Levy [(1995) Physical Review
A 52:R4313]. In this paper, numerical results within the
Hartree–Fock framework for both atoms and molecules
confirm the previously mentioned justification. Good
results of the Hartree–Fock method come from the
accurate description of the exchange effect from where
Hund’s multiplicity rule originated.
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Introduction

Hund’s multiplicity rule, stating that if two states arise
from the same electronic configuration, the state having
the higher spin multiplicity possesses the lower energy,
although proven to be generally valid, came into
quantum structure theory of atoms and molecules
merely as an empirical regulation. A general theoretical

rationalization of its origin is still lacking. For atoms, a
pretty strong case has been established in providing a
general description for the interpretation [1, 2, 3, 4, 5, 6,
7], but for molecules, the situation is quite complicated
because many factors, such as the vertical-adiabatic
separation, the molecular virial relation, the electron
correlation, and molecular geometry, have to be taken
into account [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. No
unified explanation for both atoms and molecules is
available yet.

Consider an electronic configuration of two electrons
with antiparallel spins in two different orbitals and
change the spin state of one electron from the antipar-
allel state to the parallel state, i.e., transit from the sin-
glet state to the triplet state. Intuition suggests that this
change leads to the lower exchange energy (negative
sign), and higher correlation energy (negative sign), be-
cause the number of pairs of electrons with parallel spins
increases and that of pairs with antiparallel spins de-
creases. Since Fermi correlation is stronger than Cou-
lomb correlation, one expects a net decrease in the total
energy. This is the original interpretation by Slater [1]
based on the interelectronic repulsion energy. He
claimed that the higher spin state has the lower electron–
electron repulsion energy. This interpretation proved to
be incorrect as numerical results were accumulated at
various levels showing that the higher spin state, on the
contrary, often has the higher electron–electron repul-
sion [2, 3, 4, 5, 6, 7]. Furthermore, ab initio calculations
for atomic systems indicated that the increase of the
electron–nuclear attraction energy in the higher spin
state is responsible for the lower total energy (vide infra).
Although Slater’s explanation is partly true, it does not
take other effects, of the transition from one state to
another, taking place simultaneously into account.
These effects, including molecular orbital contraction
and expansion [8, 9], anisotropic screening [7], nuclear
relaxation through the virial theorem [10, 11, 12, 13, 14],
etc., can be seen as the result of electron redistribution,
i.e., the change in electron distribution, affecting all
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energy components of the system considered. They
provide explanation frameworks for the validity of
Hund’s rule, but none of them are generally applicable
to molecular systems, as shown by Darvesh and
coworkers [10, 11, 12] and Liu and coworkers [13, 14]. In
some ranges of nuclear separation, the kinetic energy
component becomes a dominant contributor to the rule
[10, 11, 12, 13]. In an extreme case, an example has been
disclosed where the kinetic energy is the single dominant
component contributing to the rule in the whole range of
nuclear separation [14].

Inspired by the new theoretical development in the
density functional theory (DFT) [18, 19, 20] on excited
states [21, 22, 23] and multiplets [24, 25, 26], the present
work proposes a new theoretical interpretation for
Hund’s rule. Our theory is based on the extension of the
Janak theorem [27] in excited-state DFT for multiplets,
which shows that the singlet–triplet energy difference
is equal to the highest occupied molecular orbital
(HOMO) energy difference [24]. Numerical data for
both atoms and molecules confirm, as shown later, the
previously mentioned theoretical justification.

Theory

The energy difference between the singlet and triplet
states of an atomic or molecular system with the same
electron configuration, which was first thoroughly
investigated by the pioneering theoretical work of Bor-
den and Davidson [28], can be analyzed in a few ways.
The first and relatively simple way is to decompose the
total energy difference, DEST, into various components
according to their nature, i.e.,

DE ¼ DT þ DVne þ DVee þ DVnn; ð1Þ

where ES and ET are total energies of the singlet and
triplet spin states, and T, Vne, Vee, and Vnn stand for the
kinetic energy, electron–nuclear attraction, electron–
electron repulsion, and nuclear–nuclear repulsion ener-
gies, respectively. These quantities can be calculated in
either Hartree–Fock (HF) or post-HF, for example,
configuration interaction and multiconfigurational
self-consistent-field (SCF) frameworks. The validity of
Hund’s rule can be rationalized by finding the dominant
contributor among these energy components. For
example, Slater claimed that DVee was the dominant
contributor in Eq. (1), whereas later numerical results
from ab initio calculations show that the dominant term
for atoms is DVne.

The second option is to employ virial relations [1, 19,
20]. For each spin state of an atomic system, one has

E ¼ �T ¼ 1

2
Vne þ Veeð Þ: ð2Þ

Thus, the energy difference between two spin states is

DE ¼ �DT ¼ 1

2
DVne þ DVeeð Þ: ð3Þ

A thorough study in which good linear relations be-
tween E and T are observed has recently been carried
out by Koga and coworkers [15, 16, 17] for neutral
atoms up to Fm (Z=100). For molecular systems,
Eq. (3) turns out to be more complicated,
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and shows that the influence of the geometry of the
system has to be considered. This formula was employed
both by Darvesh and coworkers [10, 11, 12] and by Liu
and coworkers [13, 14] to analyze their results.

The third approach to interpret the total energy dif-
ference is via the orbital picture in the HF framework
[13, 14],

DE ¼
X

i

Dei � DVee þ DVnn; ð5Þ

where ei are the molecular orbital energies. All compo-
nents in Eq. (5) are first computed, and the dominant
term rationalizing the validity of the rule is then ex-
tracted. In two-electron molecular systems with a fixed
geometry, Eq. (5) becomes [13]

DE ¼ Dei þ DeHOMO � DVee; ð6Þ

where eHOMO and ei stand for the frontier and inner
molecular orbitals, respectively. Liu and Yu [13] showed
that the following equality is valid to good accuracy,

DE ¼ DeHOMO: ð7Þ

Equation (7) provides an alternative interpretation
for Hund’s rule, as it shows that the energy decrease in
the triplet state can be attributed solely to the energy
change of the frontier orbital owing to the orbital con-
traction and does not explicitly depend on DVee. Equa-
tion (5), however, is valid only within HF theory, where
the dynamic correlation effect among the electrons with
antiparallel spins (Coulomb correlation) is excluded.
This formalism fortunately has an analogue in the
ground-state DFT [19], in a slightly different form,

DE ¼
X

i

Dei � DJ � DExc þ Dhq rð Þ q½ � dExc

dq rð Þi þ DVnn;

ð8Þ

where J stands for the classical electron–electron Cou-
lomb repulsion energy and Exc denotes the exchange–
correlation energy, both of which are unique and uni-
versal functionals of the density, q(r), of the system,
according to the Hohenberg–Kohn theorems [18].
dExc/dq(r) in Eq. (8) is the functional derivative of the
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exchange–correlation energy density functional with re-
spect to the density, called the exchange–correlation
potential. One anticipates that in Eq. (8) the orbital
contributing most to the energy difference is the frontier
orbital. Indeed, Levy [24] has shown that the excitation
energy, DE, between the ground-state and the first-
excited-state electronic energies can be expressed as

DE � EA � EB ¼ ew
Nþ1 � e0N ¼ DeHOMO; ð9Þ

where EA is the ground-state energy of the N-electron
Hamiltonian, EB is its first-excited-state energy, and w is
the scalar factor, with 0 £ w £ 1/2. Supporting evidence
to justify this formalism is the following formula in the
DFT framework [19]:

DE � EN � EN�1 � �I ¼ eHOMO; ð10Þ

where EN and EN)1 denote total energies of the N and
N–1 electron systems, respectively, I is the ionization
potential of the N-electron system, and eHOMO is its
HOMO orbital energy. These formulas stem from the
well-known Janak theorem [27], showing that

@E
@ni
¼ ei; ð11Þ

where ni and ei are orbital occupation numbers and
orbital energies.

We are aware that Eqs. (8) and (9) were originally
formulated for systems in the ground state only and that
excited states with different symmetries (multiplets) are
considered in this study. However, extension of DFT to
excited states [21, 22, 23] and to different multiplets [24,
25, 26] of the same electron configuration has recently
been established and applied to obtain, for instance,
excitation energies of different symmetries of atoms [24,
29]. The modified version of Eq. (9) in the exact DFT for
the singlet and triplet excited states then reads [24]

DEST � ES � ET ¼ DeS�THOMO[0; ð12Þ

where DeS�THOMO stands for the HOMO energy difference
between the singlet and triplet states. Equation (12) is
exact in the context of excited-state DFT. The reason for
its validity is that the asymptotic decay of any atomic or
molecular state is given by q(r)�exp[)2(2(E0

(N)1))Ek
N)],

where Ek
N is the energy of the kth excited state of the

N-electron system. This forces the HOMO energy to be
related to the difference in energy between the N-elec-
tron system energy and that of the ground state of the
cation [29]. Equation (12) demonstrates that the sole
contribution in the energy rationalizing the validity of
Hund’s multiplicity rule originates from the HOMO
energy difference resulting from contraction of the
HOMO of the triplet state or expansion of the HOMO
of the singlet state.

To verify Eq. (12), SCF DFT calculations of the
Kohn–Sham type are required for different symmetries
and states. Examples of the exchange-only DFT method

for different symmetries and excited states are available
in the literature for atomic systems [26]. At the present
time, there has been no practical scheme to perform
Kohn–Sham-type SCF calculations including both ex-
change and correlation effects for different symmetries
and excited states. Since Hund’s rule results from a
change in the number of parallel electron pairs, an ex-
change-only approach will be sufficient to do the job. In
addition, evidence [30] shows that an exchange-only
approach of DFT gives almost the same result as the
HF method. For these reasons, we performed numerical
evaluations of Eq. (13) at the unrestricted HF (UHF)
level in this study. At this level, as a good approxima-
tion, we anticipate that

DEST � DeS�THOMO; ð13Þ

because the HF method gives the accurate Ex and, more
importantly, the correct asymptotic behavior for the
exchange potential that has been shown to be important
in reproducing acceptable HOMO energies [19].

Computational method

Both atomic and molecular systems have been investigated. To
have a broad range of representative systems, the singlet and triplet
states of neutral, cation, and anion species were included in the
atomic systems studied. The electron configurations investigated
are 1s12p1 for Li+, 1s22s12p1 for Be, 1s22s22p53s1 for F), Ne, and
Na+, and 1s22s22p63s23p54s1 for both Cl) and Ar. For molecules,
five species, H2, BH, CH+, CH2, and HCHO, were chosen, some
of which have been investigated before by others [10, 11, 12]
and thus provide examples for comparison. The electron configu-
rations from which the singlet and triplet states are produced
are 1r1

g1p
1
g for H2, 1r22r23r11p1 for BH, 1r22r23r11p1 for

CH+, 1a2
12a211b223a111b1

1 for CH2, and 1a212a213a214a211b225a111b112b122b1
1

for HCHO.
To simplify the situation, we neglect the dynamic correlation

effect among electrons with antiparallel spins, which was shown to
have no significant impact on the validity of the rule [2, 8, 9, 11].
Also, since DFT exchange-only calculations give practically the
same results as the HF method [29], UHF calculations were used
throughout this work.

The UHF calculations were performed with the GAUSSIAN94
program [31] using Dunning’s augmented correlation-consistent
polarized-valence triple zeta basis set [32] for H2 and Pople’s
6-311++G (3df,2p) basis set [33] for other systems. The former
constitutes a [4s3p2d1f/3s2p1d] contraction of a (10s5p2d1f/
5s2p1d) primitive set, plus an added diffuse function of each
angular momentum to the original set [34]. To obtain a desired
multiplet for each species, Guess=Alter was employed in combi-
nation with the quadratically convergent SCF procedure. Since the
UHF calculation for singlet states causes spin contamination, spin
projection was carried out. The value of <S2> was checked for
all the systems studied and no severe spin contamination was
observed.

For molecules, two energy differences are considered separately,
i.e., adiabatic and vertical. An adiabatic energy difference is the
energy difference when each state is in its optimized geometrical
structure. A vertical difference is taken when both states are at a
given fixed geometry. Hund’s multiplicity rule applies to both cases
in principle. Molecular geometries were all optimized at the UHF/
6-311++G(3df,2p) level for adiabatic comparison. When the
vertical difference was considered, different bond lengths were used.
For example, in CH2 case, we fixed the HCH angle at the optimized
132.06� and changed the C–H bond length from 1.0 to 3.0 Å.
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Results

Atomic results are shown in Table 1. It is found that for
all the systems investigated, the conventional DVne pic-
ture persists but that Slater’s explanation in terms of
DVee fails. That is, DVne contributes most to the total
energy difference DEST>0 in Eq. (1). For Be and Cl),
DVee is less than zero, contributing negatively to the
stability of the triplet state. These results validate the
early conclusion by Boyd [7] and others. However, we
notice that there is only one species, Be, where DVne is
the only term having a positive contribution while DT
and DVee are both negative. In all other cases, either DT
or DVee or both have a positive contribution to DE. For
instance, in the cases of Na+ and Ne, the DVne com-
ponent is 0.0150 and 0.0063, respectively, while the DVee

component contributes 0.0090 and 0.0043, respectively.
It is incorrect to say that DVee is negligibly small for
these two systems. Indeed, it plays in these cases a sig-
nificant role in the interpretation of Hund’s rule. It
seems, however, that there exists no apparent regularity
to assess contributions from DVee and DT and thus no
single physical interpretation based on the decomposi-
tion of the total energy difference into these components
can be given for all circumstances. In terms of Eq. (13),
however, a unique picture is available. One sees from
Table 1 that to very good accuracy, DEST is equal to
the highest occupied atomic orbital energy difference
DeHOMO.

For molecules, we first consider the adiabatic case
when differences are calculated at the optimized geom-
etry of each state. The results for a series of molecules
are shown in Table 2. Within the traditional framework
of Eq. (1), DVne dominance prevails in all cases except
H2. DVee and DT both contribute negatively. For H2, all
three terms contribute positively, with the biggest con-
tribution coming from DT, but not DVne. These results
invalidate the original explanations in terms of DVee and
DVne for molecules. More counterexamples will readily
be seen in the comparison of vertical differences. The
HOMO picture, nevertheless, still survives. The accuracy
of the equality DEST=DeHOMO is as good as in the
atomic case.

A more severe test is the vertical difference for
molecules. It is known [10, 11, 12, 13, 14] that the situ-

ation is much more complicated in this case. At some
ranges of nuclear separation of a molecule, DT may
become dominant, while at other places DVne governs
the validity of Hund’s rule. No particular rules
describing this phenomenon have been found either. An
extreme example [13] has been disclosed that DT domi-
nates all ranges of a bond separation and that DVne does
not play any positive role at all. To rationalize numerical
data, various analysis tools have been applied, such as
the molecular virial theorem [10, 11, 12, 14], electron
density redistribution difference [10, 11, 12], yet no
unitary picture emerges. The systems reported in the
literature include H2 [8, 9], XHn+ (X=Li–F, n=2–8)
[13, 14], XH (X=B, C, N,O, F) [12], CH2 [10], and
HCHO [11]. To show that the new interpretation applies
to all these systems, four representative species, H2,
LiH+2, BH, and CH2, were chosen for vertical evalua-
tion. They represent both diatomic and polyatomic two-
electron and many-electron systems. The results are
plotted in Figs. 1, 2, 3, and 4, respectively.

Table 1. Energy differences of singlet and triplet states for a few
atomic systems, Li+, Be, F),Ne, Na+, Cl), and Ar. Electronic
configurations: Li+ 1s12p1; Be 1s22s12p1; F)1s22s22p53s1; Ne
1s22s22p53s1; Na+ 1s22s22p53s1; Cl)1s22s22p53s23p54s1; Ar
1s22s22p53s23p54s1. Atomic units

DT DVee DVne DeHOMO DEST

Li+ 0.0063 0.0013 0.0095 0.0173 0.0171
Be )0.0693 )0.0427 0.1816 0.0679 0.0696
F) )0.0203 0.0064 0.0224 0.0085 0.0085
Ne )0.0149 0.0090 0.0150 0.0092 0.0091
Na+ )0.0046 0.0043 0.0063 0.0061 0.0060
Cl) 0.0121 )0.0341 0.0272 0.0055 0.0052
Ar )0.0082 0.0036 0.0103 0.0060 0.0057

Table 2. Adiabatic energy differences of singlet and triplet states for
a few molecules, H2, CH+, BH, CH2, and HCHO. Electronic-
configurations: H2 r1

g1p
1
g;BH 1r22r23r11p1;CH+ 1r22r23r11p1;

CH2 1a2
12a211b223a111b11;HCHO 1a2

12a213a214a211b225a1
11b112b122b11.

Atomic units

DT DVee DVnn DVne DeHOMO DEST

H2 0.0110 0.0014 0.0084 )0.0172 0.0037 0.0035
BH )0.0386 )0.0583 )0.0396 0.1780 0.0412 0.0415
CH+ )0.0428 )0.0936 )0.1487 0.3288 0.0458 0.0438
CH2 )0.0299 )0.0055 )0.0063 0.0644 0.0366 0.0354
HCHO )0.0055 )0.0703 )0.0920 0.1730 0.0051 0.0052

Fig. 1. Vertical energy differences (S–T) of various energy compo-

nents for the triplet and singlet states of the 1r1
g1p

1
g electron

configuration of the hydrogen molecule at different H–H bond
lengths (atomic units). Calculations were performed the unre-
stricted Hartree–Fock (UHF)/aug-cc-pVTZ level. See text
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DEST and its components of H2 is shown in Fig. 1
versus different H–H bond lengths, RH–H. The energy
components include DT, DVne, DVee, and DeHOMO. These
curves provide two different pictures for the rationali-
zation of Hund’s rule. In terms of Eq. (1), we find that
at all ranges DVne<0 and that DT>0 and DVee>0,
both contribute positively. DVee is the largest in the
range 4.0–6.0 Å and DT dominates at other distances.
This example apparently provides another counterex-
ample that the DVne scenario of the interpretation of
Hund’s rule is invalid. Turning to the HOMO picture,
one finds that DeHOMO follows DEST at all distances,
with DeHOMO slightly larger than DEST. It is safe to say
that DeHOMO plays a major role in determining DEST for
all RH–H investigated here in this case, indicating the
soundness of the present interpretation.

Another example of the two-electron system is given
in Fig. 2. LiH+2 has been studied previously [13, 14],
but here we are concerned with a different configuration,
1r11p1. In the framework of Eq. (1), DT is dominant
when RLi–H<4.0 Å and DVne is dominant otherwise.
DVee is positive all the way down with significant con-
tributions at small RLi–H. At large RLi–H, even though
DVne is the largest, we still see significant positive con-
tributions from DT. With the HOMO picture, no matter
how complicatedly the previously mentioned compo-
nents behave, only one conclusion can be drawn:
DeHOMO corresponds to DE and to a very good
approximation DeHOMO=DE is valid.

Now, let us consider many-electron systems. The BH
molecule has previously been investigated by Darvesh
et al. [12].The behavior of its energy components can be
seen in Fig. 3. One observes that when RB–H<2.5 Å,
DVne is the only term contributing positively to DEST,
while both DVee and DT are negative. When
RB–H>2.5 Å, the only positive term changes to DT, with

both DVne<0 and DVee<0. Comparing it with Figs. 1
and 2, we find no similarity of behavior among these
energy components. In terms of the HOMO picture,
however, another case is shown that a unique explana-
tion exists for Hund’s rule using DeHOMO. Again, to
satisfactory accuracy, DeHOMO follows DEST as RB–H

changes and the equality DeHOMO=DE is a good
approximation.

Our final vertical example for molecules is CH2 (B1),
a many-electron polyatomic species, which has also been
previously investigated [10]. The H–C–H angle was kept
at the optimized value of 132.06�. Various energies are
plotted versus the C–H bond length in Fig. 4. Though

Fig. 2. Vertical energy differences (S–T) of various energy compo-
nents for the triplet and singlet states of the 1r11p1 electron
configuration of the LiH2+ ion at the UHF/6-311++G(3df,2p)
level (atomic units)

Fig. 3. Vertical energy differences (S–T) of various energy compo-
nents for the triplet and singlet states of the 1r22r23r11p1 electron
configuration of the BH molecule at the UHF/6-311++G(3df,2p)
level (atomic units)

Fig. 4. Vertical energy differences (S–T) of various energy compo-
nents for the triplet 3B1 and singlet 1B1 states of the
1a212a211b223a111b11 electron configuration of the CH2 molecule at
the UHF/6-311++G(3df,2p) level (atomic units). \HCH=
132.059�

342



numerical values are quite different, general tendencies
of the energy differences are almost the same as those of
Fig. 3. DT exchanges its role with DVne at about 2.5 Å
and DVee is always less than zero. Also, we find that
DeHOMO=DEST is still valid for all distances of RC–H

investigated.

Discussion

Our results show collectively that a new theoretical
interpretation for Hund’s multiplicity rule is in place.
The theory is based on Eq. (12) [24], indicating that the
single contribution to DEST originates from the energy
difference of the highest occupied atomic or molecular
orbitals of the singlet and triplet. To very good accuracy,
within the HF framework, we found that
DeHOMO=DEST. This is because the HF method gives
the correct exchange energy and, more importantly, the
correct asymptotic behavior for the exchange potential
that plays a major role in determining the HOMO en-
ergy. This has been confirmed by tests from atomic and
adiabatic and vertical molecular results reported here. In
contrast, using the conventional scheme of Eq. (1), one
observes that quite complicated situations are encoun-
tered for molecules and that no single component has
been found responsible for the behavior of DEST in all
circumstances.

This picture has previously been applied to a few two-
electron diatomics by one of the present authors [13].
Thanks to the recent development of DFT on excited
states and multiplets, its extension to systems of general
interest is now possible. The validity of the equation
DeHOMO=DEST may be thought of as a consequence of
the Janak theorem applied to excited multiplets in DFT.
One may also think of the equality as a consequence
of the extended Koopman theorem [35]. Though our
numerical tests were simply based on the UHF
approach, the previously mentioned theoretical rationale
is the basis of the present development.

What is the physical meaning of the present inter-
pretation? The first option is the orbital contraction
picture. The concept of orbital contraction has previ-
ously been applied to explain this rule [8, 9]. It came
along with another concept, orbital expansion. It is hard
to imagine that while all orbitals are either contracted or
expanded, only the contracted HOMO is responsible for
the validity of Hund’s rule. There may exist cancella-
tions of contributions from inner orbitals. The other
option has to do with the HOMO–lowest unoccupied
molecular orbital (LUMO) gap, or more generally, the
maximum hardness principle (MHP) [36, 37, 38]. As
stated by Pearson, nature tends to have species as hard
as possible, or have the HOMO–LUMO gap as large as
possible for atoms and molecules. Stabler means harder.
MHP has been used to explain aromaticity [38], the
stability of C60 and other cluster molecules [36], etc.
Hund’s rule provides another example for the MHP.
When a system transits from a lower spin state to a

higher spin state, stability is produced by the lower
HOMO, and thus by the larger HOMO–LUMO gap. Of
course, redefinitions for orbitals and hardness have to be
made in the framework of excited multiplets in DFT.

Generally speaking, when transiting from a lower
spin state to a higher spin state, a system experiences
many changes simultaneously. These can be summarized
by electron redistribution, leading to changes in energy
components, orbital movement, nuclear relaxation, and
electron correlation. All these changes are, however, due
to one variation: the variation in the number of pairs of
electrons with parallel spins. The previous interpretation
via DVne attributes its physics to the anisotropic
screening effect [7] among electrons. Our present theory
attributes the stability of a higher spin state to the MHP.
It is out of question that the present interpretation is
more general than the previous one, as the earlier
examples showed. However, questions remain to be
answered as to how a change in the number of pairs of
electrons with the same spin leads to so many changes in
properties, and why changes in the HOMOs are solely
responsible for all others.

Finally, we mention that our presentation is based on
some approximations. First, the dynamic electron cor-
relation was neglected. This neglect could prove too
much for some systems. We justified our approximation,
on the one hand, by the fact that Hund’s rule resulted
from the change in the number of pairs of electrons with
parallel spins and thus Fermi correlation is more
important. On the other hand, Darvesh and coworkers
[10, 11, 12] demonstrated that the dynamical effect is not
qualitatively essential though numerically significant.
Also, our numerical data of vertical molecular differ-
ences for BH and CH2 reproduce well what Darvesh and
coworkers [11, 12] obtained when the dynamic correla-
tion effect was included. More study is needed from the
DFT viewpoint by explicitly taking into account the
electron correlation. Secondly, the UHF method was
employed to replace the exchange-only Kohn–Sham
approach [29]. In addition, all systems we investigated
are nondegenerate where a single Slater determinant is
adequate for the description. More work is needed for
degenerate states where one has to resort to such
methods as multiconfigurational SCF and multirefer-
ence configuration interaction. The idea of explaining
Hund’s rule for those systems in terms of the HOMO–
LUMO gap or hardness needs to be further developed.

Conclusions

A theoretical basis has been proposed in this paper to
explain the general validity of Hund’s multiplicity rule,
which states that a higher spin state has a lower energy
than a lower spin state if they arise from the same
electron configuration. The theory is based on the
extension of modern DFT on excited states and multi-
plets. It stems from the Janak theorem and the extended
Koopman theorem. It was shown that the energy dif-
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ference comes from the highest occupied atomic or
molecular orbitals [24] and to quite satisfactory accuracy
the equality DeHOMO=DEST holds even at the HF level.
The underlying physics of this interpretation was
attributed to the MHP of Pearson [36, 37], dictating in
this case that the stabler a species is, the harder it is.
Numerical tests for a number of atoms and molecules
confirmed this formalism. The most critical evaluation is
the vertical comparison for a few molecules, as shown in
Figs. 1, 2, 3, and 4. No matter how complicated the
energy components in Eq. (1) behave, we have the same
scenario in Eq. (12), DeHOMO=DEST.
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